
For Use with MATLAB®

Computation

Visualization

Programming

Excel Link

User’s Guide
Version 2

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Excel Link User’s Guide
 COPYRIGHT 1996 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1996 First printing New for 1.0
May 1996 First printing New for 1.0
May 1997 Second printing Revised for 1.0.3
January 1999 Third printing Revised for 1.0.8 (Release 11)
September 2000 Fourth printing Revised for 1.1.2
April 2001 Fifth printing Revised for1.1.3
July 2002 Sixth printing Revised for 2.0 (Release 13)
September 2003 Online only Revised for 2.1 (Release 13 SP1)
June 2004 Online only Revised for 2.2 (Release 14)

Contents
1
Getting Started

What Is Excel Link? . 1-2
Understanding the Environment . 1-2

Installing and Operating Excel Link . 1-3
System Requirements . 1-3
Installing Excel Link . 1-3
Configuring Excel to Work with Excel Link 1-3
Starting Excel Link . 1-5

Automatic Start . 1-5
Manual Start . 1-5

Connecting to an Existing MATLAB Session 1-5
Stopping Excel Link . 1-5

What the Functions Do . 1-7
Link Management Functions . 1-7
Data Management Functions . 1-8

Tips and Reminders . 1-9
Syntax . 1-9

Function Names . 1-9
Worksheet Formulas . 1-9
Variable Names . 1-9

Worksheets . 1-10
Macros . 1-11
Data Types . 1-11
Dates . 1-11
Saved Worksheets . 1-12
Information for International Users . 1-12
i

ii Contents
2
Using Excel Link

Example 1: Regression and Curve Fitting 2-3
Worksheet Version . 2-3
Macro Version . 2-6

Example 2: Interpolating Data . 2-9

Example 3: Pricing a Stock Option with the
Binomial Model . 2-13

Example 4: Calculating and Plotting the Efficient Frontier
of Financial Portfolios . 2-16

Example 5: Bond Cash Flow and Time Mapping 2-20

3
Function Reference

Functions - Categorical List . 3-3
Link Management Functions . 3-3
Data Management Functions . 3-4

Functions — Alphabetical List . 3-5

A
Error Messages and Troubleshooting

Excel Cell Error Messages . A-2

Excel Error Message Boxes . A-5

Audible Error Signals . A-7

Data Errors . A-8

B
Installed Files

Files and Directories . B-2

Index
iii

iv Contents

1

Getting Started

What Is Excel Link? (p. 1-2) How Excel Link works with both MATLAB and Excel.

Installing and Operating Excel Link
(p. 1-3)

How to make Excel Link work with Excel after
installation.

What the Functions Do (p. 1-7) Describes the two kinds of Excel Link functions -- Link
Management and Data management.

Tips and Reminders (p. 1-9) Miscellaneous details concerning product use.

1 Getting Started

1-2
What Is Excel Link?
Excel Link is a software add-in that integrates Microsoft Excel and MATLAB®
in a Microsoft Windows-based computing environment. By connecting Excel
and MATLAB, you can access the numerical, computational, and graphical
power of MATLAB from Excel worksheet and macro programming tools. Excel
Link lets you exchange and synchronize data between the two environments.

Understanding the Environment
Excel Link communicates between the Excel workspace and the MATLAB
workspace. It positions Excel as a front end to MATLAB. You use Excel Link
functions from an Excel worksheet or macro, and you never have to leave the
Excel environment. With a small number of functions to manage the link and
manipulate data, Excel Link is powerful in its simplicity.

Installing and Operating Excel Link
Installing and Operating Excel Link
Follow these instructions to install Excel Link and then configure Excel.

System Requirements
Excel Link requires approximately 202 kilobytes of disk space. Operating
system requirements are

• Microsoft Windows XP

• Microsoft Windows NT

• Microsoft Windows 2000

Excel Link also requires Microsoft Excel 98, Excel 2000, or Excel 2002 and
MATLAB for Windows version 5.1 or later.

For best results with MATLAB figures and graphics, set the color palette of
your display to a value greater than 256 colors. Click Start, then Settings and
Control Panel. Open Display, and on the Settings tab, choose an appropriate
entry from the Color Palette menu.

Installing Excel Link
Install Windows and Excel before you install MATLAB and Excel Link. To
install Excel Link, follow the instructions in the MATLAB installation
documentation. Click in the box for Excel Link when you select MATLAB
components to install.

Configuring Excel to Work with Excel Link
Once you have installed Excel Link, you are ready to configure Excel. You need
do these steps only once:

1 Start Microsoft Excel.

2 Pull down the Tools menu, select Add-Ins and click Browse.

3 Find and select the Excel Link add-in excllink.xla under
<matlab>/toolbox/exlink. Click OK.
1-3

1 Getting Started

1-4
Note Throughout this document the notation <matlab> represents the
MATLAB root directory, the directory where MATLAB is installed on your
system.

4 Back in the Add-Ins window, make sure there is a check in the box for Excel
Link for use with MATLAB and click OK. The Excel Link add-in loads now
and with each subsequent invocation of Excel.

5 Watch for the appearance of the MATLAB Command Window button on
the Windows taskbar.

Note The MATLAB desktop does not start automatically at this time. If you
want to run the desktop, enter the desktop command in the Command
Window.

6 Watch for the appearance of the Excel Link toolbar on your Excel worksheet.

Excel Link is now ready for your use.

Send data to
MATLAB

Retrieve MATLAB
matrix

Execute MATLAB
command

Start MATLAB
and display
Command
Window

Installing and Operating Excel Link
Starting Excel Link

Automatic Start
When installed and configured according to the preceding instructions, Excel
Link and MATLAB automatically start when you start Excel.

If you do not want Excel Link and MATLAB to start automatically when you
start Excel, enter =MLAutoStart("no") in a worksheet cell. This function
changes the initialization file so that Excel Link and MATLAB no longer start
automatically when you start Excel. See MLAutoStart in Chapter 3, “Function
Reference.”

Manual Start
To start Excel Link and MATLAB manually from Excel, pull down the Tools
menu and select Macro. In the Macro Name/Reference box enter matlabinit
and click Run. Watch for the MATLAB Command Window button to appear
on the taskbar. See matlabinit in Chapter 3, “Function Reference.”

Connecting to an Existing MATLAB Session
To connect a new Excel session to an existing MATLAB process, you must start
MATLAB with the /automation command line option. The /automation option
starts MATLAB as an automation server. The Command Window is
minimized, and the MATLAB desktop is not running.

To add the /automation option to the command line,

1 Right-click on your shortcut to MATLAB.

2 Select Properties.

3 Click on the Shortcut tab.

4 Add the string /automation in the Target field. Remember to leave a space
between matlab.exe and /automation.

Stopping Excel Link
To stop both Excel Link and MATLAB, stop Excel as you normally would. Excel
Link and MATLAB both stop when you stop Excel.
1-5

1 Getting Started

1-6
To stop MATLAB and Excel Link and leave Excel running, enter =MLClose()
in an Excel worksheet cell. You can restart Excel Link and MATLAB manually
with MLOpen or matlabinit.

If you stop MATLAB directly in the MATLAB Command Window and leave
Excel running, enter =MLClose() in an Excel worksheet cell. (MLClose tells
Excel that MATLAB is no longer running.) You can restart Excel Link and
MATLAB manually with MLOpen or matlabinit.

What the Functions Do
What the Functions Do
With Excel Link, Microsoft Excel becomes an easy-to-use data-storage and
application-development front end for MATLAB, which is a powerful
computational and graphical processor.

Excel Link provides functions to manage the link and to manipulate data. You
never have to leave the Excel environment. You can invoke functions as
worksheet cell formulas or in macros.

See Chapter 3, “Function Reference” for details on each function.

Link Management Functions
Excel Link provides four link management functions to initialize, start, and
stop Excel Link and MATLAB.

You can invoke any link management function except matlabinit as a
worksheet cell formula or in a macro. You invoke matlabinit from the Excel
Tools Macro menu or in a macro subroutine.

Use MLAutoStart to toggle automatic startup. If you install and configure Excel
Link according to the default instructions, Excel Link and MATLAB
automatically start every time you start Excel. If you choose manual startup,
use matlabinit to initialize Excel Link and start MATLAB.

Use MLClose to stop MATLAB without stopping Excel, and use MLOpen or
matlabinit to restart MATLAB in the same Excel session.

Function Purpose

matlabinit Initialize Excel Link and start MATLAB process.

MLAutoStart Automatically start MATLAB process.

MLClose Terminate MATLAB process.

MLOpen Start MATLAB process.
1-7

1 Getting Started

1-8
Data Management Functions
Excel Link provides nine data management functions to copy data between
Excel and MATLAB and to execute MATLAB commands from Excel.

You can invoke any data management function except MLGetVar and MLPutVar
as a worksheet cell formula or in a macro. You can invoke MLGetVar and
MLPutVar only in a macro.

Use MLAppendMatrix, MLPutMatrix, and MLPutVar to copy data from Excel to
MATLAB.

Use MLEvalString to execute MATLAB commands from Excel.

Use MLDeleteMatrix to delete a MATLAB variable.

Use matlabfcn, matlabsub, MLGetMatrix and MLGetVar to copy data from
MATLAB to Excel.

Function Purpose

matlabfcn Evaluate MATLAB command given Excel data.

matlabsub Evaluate MATLAB command given Excel data
and designate output location.

MLAppendMatrix Create or append MATLAB matrix with data
from Excel worksheet.

MLDeleteMatrix Delete MATLAB matrix.

MLEvalString Evaluate command in MATLAB.

MLGetMatrix Write contents of MATLAB matrix in Excel
worksheet.

MLGetVar Write contents of MATLAB matrix in Excel VBA
variable.

MLPutMatrix Create or overwrite MATLAB matrix with data
from Excel worksheet.

MLPutVar Create or overwrite MATLAB matrix with data
from Excel VBA variable.

Tips and Reminders
Tips and Reminders
These tips and reminders help you use Excel Link efficiently.

Excel Link functions perform an action, while Microsoft Excel functions return
a value. Keep this distinction in mind as you use Excel Link. Excel operations
and function keys may behave differently with Excel Link functions.

Syntax

Function Names

• Excel Link function names are not case sensitive; that is, MLPutMatrix and
mlputmatrix are the same.

• MATLAB function names and variable names are case sensitive; that is,
BONDS, Bonds, and bonds are three different MATLAB variables. Standard
MATLAB function names are always lower case; for example, plot(f).

Worksheet Formulas
• Begin worksheet formulas with + or =. For example,

=mlputmatrix("a", C10)

• In worksheet formulas, enclose function arguments in parentheses. In
macros, leave a space between the function name and the first argument; do
not use parentheses.

Variable Names
• You can directly or indirectly specify a variable-name argument in most

Excel Link functions.

- To specify a variable name directly, enclose it in double quotes; for
example, MLDeleteMatrix("Bonds").

- A variable-name argument without quotes is an indirect reference. The
function evaluates the contents of the argument to get the variable name.
The argument must be a worksheet cell address or range name.

• A data-location argument must be a worksheet cell address or range name.
Do not enclose a data-location argument in quotes (except in MLGetMatrix,
which has unique argument conventions).
1-9

1 Getting Started

1-1
• A data-location argument can include a worksheet number; for example,
Sheet3!B1:C7 or Sheet2!OUTPUT.

Note Excel Link does not accept spaces or square brackets ([]) in sheet
names or range designations.

Worksheets
• After an Excel Link function successfully executes as a worksheet formula,

the cell contains the value 0. While a function is executing, the cell may
continue to show the entered formula.

• We suggest selecting Move Selection after Enter on the Excel Tools
Options -> Edit tab. The active cell changes when an operation is complete,
providing a useful confirmation for lengthy operations.

• We recommend using Excel Link functions in automatic calculation mode. If
you use MLGetMatrix in manual calculation mode, enter the function in a
cell, then press F9 to execute it. However, pressing F9 in this situation may
also reexecute other worksheet functions and generate unpredictable
results.

• To recalculate Excel Link functions in a worksheet, reexecute each function
by pressing F2, then Enter.

• Pressing F9 to recalculate a worksheet affects only Excel functions (which
return a value). F9 does not operate on Excel Link functions, which perform
an action.

• To “automate” the recalculation of an Excel Link function, add to it some cell
whose value changes. For example:
=MLPutMatrix("bonds", D1:G26) + C1

When the value in cell C1 changes, Excel re-executes the MLPutMatrix
function. Be careful, however, not to create endless recalculation loops.

• Excel Link functions expect A1-style worksheet cell references. Select A1 cell
Reference Style on the Excel Tools Options -> General tab.

• If you use explicit cell addresses in MLGetMatrix and later insert or delete
rows or columns, or move or copy the function to another cell, edit the
0

Tips and Reminders
argument to correct the addresses. Excel Link does not automatically adjust
cell addresses in MLGetMatrix.

• Enter (type) Excel Link functions directly in worksheet cells. Do not use the
Excel Function Wizard; it generates unpredictable results.

Macros
• To create macros that use Excel Link functions, you must first configure

Excel to reference the functions from the Excel Link add-in. From the Visual
Basic environment pull down the Insert menu and select Module. When the
Module page opens, pull down the Tools menu and select References. In the
References window, select the box for excllink.xla and click OK. You may
have to use Browse to find the excllink.xla file.

• If you use MLGetMatrix in a macro subroutine, enter MatlabRequest on the
line after MLGetMatrix. MatlabRequest initializes internal Excel Link
variables and enables MLGetMatrix to function in a subroutine. For example:

Sub Get_RangeA()
MLGetMatrix "A", "RangeA"
MatlabRequest
End Sub

Do not include MatlabRequest in a macro function unless the macro function
is called from a subroutine.

Data Types
• Excel Link handles only MATLAB two-dimensional numeric arrays,

one-dimensional character arrays (strings), and two-dimensional cell arrays.
It does not work with MATLAB multidimensional arrays and structures.

Dates
• Default Excel date numbers start from January 1, 1900, while MATLAB date

numbers start from January 1, 0000. Thus May 15, 1996 is 35200 in Excel
and 729160 in MATLAB, a difference of 693960. If you use date numbers in
MATLAB calculations, apply the 693960 constant: add it to Excel date
numbers going into MATLAB, or subtract it from MATLAB date numbers
1-11

1 Getting Started

1-1
coming into Excel. If you use the optional Excel 1904 date system, the
constant is 695422.

Saved Worksheets
• When you open an Excel worksheet that contains Excel Link functions, Excel

tries to execute the functions from the bottom up and right to left, thus
possibly generating cell error messages (#COMMAND!, #NONEXIST!, etc.). Such
behavior is usual for Excel. Simply ignore the messages, close any MATLAB
figure windows, and reexecute the cell functions one at a time in the correct
order by pressing F2, and then Enter.

• If you save an Excel worksheet containing Excel Link functions and later
open it under a different computer environment where the excllink.xla
add-in is in a different location, Excel may display a message box.

Click No. Then pull down the Edit menu and select Links. In the Links
window, click Change Source. In the Change Links window, find and select
excllink.xla under <matlab>/toolbox/exlink and click OK. Excel
executes each function as it changes its link. You may see MATLAB figure
windows and hear error beeps as the links change and functions execute;
ignore them. Back in the Links window, click OK. The worksheet now
correctly connects to the Excel Link add-in.

Or, instead of using the Edit Links menu, you can manually edit the link
location in each affected worksheet cell to show the correct location of
excllink.xla.

Information for International Users
This document uses Excel with an English (United States) Windows regional
setting for illustrative purposes. If you use Excel Link with a
non-English (United States) Windows desktop environment, certain
2

Tips and Reminders
syntactical elements may not work as illustrated. For example, you may have
to replace the comma (,) delimiter within the Excel Link commands with a
semicolon (;) or other operator.

Please consult your Windows documentation to determine which regional
setting differences exist among various international versions.
1-13

1 Getting Started

1-1
4

2

Using Excel Link

Example 1: Regression and Curve
Fitting (p. 2-3)

Data regression and curve fitting.

Example 2: Interpolating Data (p. 2-9) Uses an Excel worksheet to organize and display the
original data and the interpolated output data.

Example 3: Pricing a Stock Option with
the Binomial Model (p. 2-13)

Uses the binomial model to price an option.

Example 4: Calculating and Plotting
the Efficient Frontier of Financial
Portfolios (p. 2-16)

Analyzes three portfolios, using rates of return for six
time periods.

Example 5: Bond Cash Flow and Time
Mapping (p. 2-20)

Computes a set of cash flow amounts and dates given a
portfolio of five bonds.

2 Using Excel Link

2-2
This section shows how Microsoft Excel, Excel Link, and MATLAB work
together to solve real-world problems.

These examples ship with Excel Link in the file ExliSamp.xls, which is
installed in <matlab>/toolbox/exlink/. Start Excel, Excel Link, and
MATLAB. Open and try executing the examples.

Note Examples 1 and 2 use only basic MATLAB functions. Examples 3, 4,
and 5 use functions in the optional MATLAB Financial Toolbox. The Financial
Toolbox in turn requires the Statistics and Optimization Toolboxes.

Example 1: Regression and Curve Fitting
Example 1: Regression and Curve Fitting
Regression techniques and curve fitting attempt to find functions that describe
the relationship among variables. In effect, they attempt to build mathematical
models of a data set. MATLAB provides many powerful yet easy-to-use matrix
operators and functions to simplify the task.

This example does both data regression and curve fitting. It also executes the
same example in a worksheet version and a macro version. The example uses
Excel worksheets to organize and display the data. Excel Link functions copy
the data to MATLAB and execute MATLAB computational and graphic
functions. The macro version also returns output data to an Excel worksheet.

Worksheet Version
To try the worksheet-only version of this example, click the Sheet1 tab on
ExliSamp.xls.
2-3

2 Using Excel Link

2-4
The worksheet contains one named range: A4:C28 is named DATA and contains
the sample data set:

1 Make E5 the active cell. Press F2, then Enter to execute the Excel Link
function that copies the sample data set to MATLAB. The data set contains
25 observations of three variables. There is a strong linear dependence
among the observations; in fact, they are close to being scalar multiples of
each other.

2 Move to cell E8 and press F2, then Enter. Repeat with cells E9 and E10.
These Excel Link functions tell MATLAB to regress the third column of data
on the other two columns. They create a single vector y containing the
third-column data, and a new three-column matrix A consisting of a column
of ones followed by the rest of the data.

3 Execute the function in cell E13. This function computes the regression
coefficients by using the MATLAB backslash operation to solve the
(overdetermined) system of linear equations, A*beta = y.

4 Execute the function in cell E16. MATLAB matrix-vector multiplication
produces the regressed result (fit).

5 Execute the functions in cells E19, E20, and E21. These functions compare
the original data with fit; sort the data in increasing order and apply the
same permutation to fit; and create a scalar for the number of observations.

6 Execute the functions in cells E24 and E25. Often it is useful to fit a
polynomial equation to data. To do so, you would ordinarily have to set up a
system of simultaneous linear equations and solve for the coefficients. The
MATLAB polyfit function automates this procedure, in this case for a
fifth-degree polynomial. The polyval function then evaluates the resulting
polynomial at each data point to check the goodness of fit (newfit).

7 Finally, execute the function in cell E28. The MATLAB plot function graphs
the original data (blue circles), the regressed result fit (dashed red line),
and the polynomial result (solid green line); and adds a legend.

Example 1: Regression and Curve Fitting
.

Since the data is closely correlated but not exactly linearly dependent, the fit
curve (dashed line) shows a close, but not an exact, fit. The fifth-degree
polynomial curve, newfit, represents a more accurate mathematical model for
the data.

When you have finished this version of the example, close the figure window.
2-5

2 Using Excel Link

2-6
Macro Version
To try the macro-and-worksheet version of this example, click the Sheet2 tab
on ExliSamp.xls.
.

Make cell A4 the active cell, but do not execute it yet.

Cell A4 calls the macro CurveFit, which you can examine from the Visual Basic
environment.

Example 1: Regression and Curve Fitting
While this module is open, pull down the Tools menu and select References.
In the References window, make sure there is a check in the box for
excllink.xla. If not, check the box and click OK. You may have to use Browse
to find the excllink.xla file.

Back in cell A4 of Sheet2, press F2, then Enter to execute the CurveFit macro.
The macro executes the same functions as in Step 1 through Step 7 of the
worksheet version (in a slightly different order), including plotting the graph.
Plus, it copies the original data y (sorted), the corresponding regressed data
fit, and the polynomial data newfit, to the worksheet. (The last three
MLGetMatrix functions in the CurveFit macro copy data to the Excel
worksheet.)
2-7

2 Using Excel Link

2-8
When you have finished the example, close the figure window.

Example 2: Interpolating Data
Example 2: Interpolating Data
Interpolation is a process for estimating values that lie between known data
points. It is important for applications such as signal and image processing and
data visualization. MATLAB provides a number of interpolation functions that
let you balance the smoothness of data fit with execution speed and efficient
memory use.

This example uses a two-dimensional data-gridding interpolation function on
thermodynamic data, where volume has been measured for time and
temperature values. It finds the volume values underlying the
two-dimensional time-temperature function for a new set of time and
temperature coordinates.

The example uses an Excel worksheet to organize and display the original data
and the interpolated output data. Excel Link functions copy the data to and
from MATLAB, execute the MATLAB interpolation function, and invoke
MATLAB graphics to display the interpolated data in a three-dimensional
color surface.

To try this example, click the Sheet3 tab on ExliSamp.xls.
2-9

2 Using Excel Link

2-1
The worksheet contains the measured thermodynamic data in cells A5:A29,
B5:B29, and C5:C29. The time and temperature values for interpolation are in
cells E7:E30 and F6:T6 respectively:

1 Make A33 the active cell. Press F2, then Enter to execute the Excel Link
function that passes the Time, Temp, and Volume labels to MATLAB.

2 Make A34 the active cell. Press F2, then Enter to execute the Excel Link
function that copies the original time data to MATLAB. Move to cell A35 and
0

Example 2: Interpolating Data
execute the function to copy the original temperature data. Execute the
function in cell A36 to copy the original volume data.

3 Move to cell A39 and press F2, then Enter to copy the interpolation time
values to MATLAB. Execute the function in cell A40 to copy the interpolation
temperature values.

4 Execute the function in cell A43. griddata is the MATLAB two-dimensional
interpolation function that generates the interpolated volume data using the
inverse distance method.

5 Execute the functions in cells A46 and A47 to transpose the interpolated
volume data and copy it to the Excel worksheet. The data fills cells F7:T30,
which are enclosed in a border.

6 Execute the function in cell A50. MATLAB plots and labels the interpolated
data on a three-dimensional color surface, with the color proportional to the
interpolated volume data.
2-11

2 Using Excel Link

2-1
When you have finished with the example, close the figure window.
2

Example 3: Pricing a Stock Option with the Binomial Model
Example 3: Pricing a Stock Option with the Binomial Model
The MATLAB Financial Toolbox provides several functions that compute
prices, sensitivities, and profits for portfolios of options or other equity
derivatives. This example uses the binomial model to price an option. The
binomial model assumes that the probability of each possible price over time
follows a binomial distribution; that is, that prices can move to only two values,
one up and one down, over any short time period. Plotting the two values, and
then the subsequent two values each, and then the subsequent two values
each, and so on, over time, is known as building a binomial tree.

This example uses the Excel worksheet to organize and display input and
output data. Excel Link functions copy data to a MATLAB matrix, calculate the
prices, and return data to the worksheet.

Note This example requires use of the optional MATLAB Financial Toolbox.

Click the Sheet4 tab on ExliSamp.xls to try this example.
2-13

2 Using Excel Link

2-1
The worksheet contains three named ranges:

• B4:B10 named bindata

• B15 named asset_tree

• B23 named value_tree

Also, two cells in bindata actually contain formulas:

• B7 contains =5/12

• B8 contains =1/12

Make D5 the active cell. Press F2, then Enter to execute the Excel Link
function that copies the asset data to MATLAB. Move to D8 and execute the
function that computes the binomial prices, then execute the functions in D11
and D12 to copy the price data to Excel.

The worksheet looks like this.
4

Example 3: Pricing a Stock Option with the Binomial Model
Read the asset price tree this way: Period 1 shows the up and down prices,
Period 2 shows the up-up, up-down, and down-down prices, Period 3 shows the
up-up-up, up-up, down-down, and down-down-down prices, and so on. Ignore
the zeros. The option value tree gives the associated option value for each node
in the price tree. Because this is a put, the option value is zero for prices
significantly above the exercise price. Ignore the zeros that correspond to a zero
in the price tree.

Try changing the data in B4:B10 and reexecuting the Excel Link functions.
Note, however, that if you increase the time to maturity (B7) or change the time
increment (B8), you may need to enlarge the output tree areas.
2-15

2 Using Excel Link

2-1
Example 4: Calculating and Plotting the Efficient Frontier of
Financial Portfolios

MATLAB and the Financial Toolbox provide functions that compute and graph
risks, variances, rates of return, and the efficient frontier of portfolios. Efficient
portfolios have the lowest aggregate variance, or risk, for a given return. Excel
and Excel Link let you set up data, execute financial functions and MATLAB
graphics, and display numeric results.

This example analyzes three portfolios, using rates of return for six time
periods. In actual practice, these functions can analyze many portfolios over
many time periods, limited only by the amount of computer memory available.

Note This example requires use of the optional MATLAB Financial Toolbox.

Click the Sheet5 tab on ExliSamp.xls to try this example.
6

Example 4: Calculating and Plotting the Efficient Frontier of Financial Portfolios
Make A15 the active cell. Press F2, then Enter to execute the Excel Link
function that transfers the labels describing the outputs to be computed by
MATLAB. Then make A16 the active cell to copy the actual portfolio return
data to MATLAB. Execute the functions in A19 and A20 to compute the
MATLAB Financial Toolbox efficient frontier function for 20 points along the
frontier. Execute the Excel Link functions in A23, A24, and A25 to copy the
output data to Excel.
2-17

2 Using Excel Link

2-1
The worksheet looks like this.

The data describes the efficient frontier for these three portfolios: that set of
points representing the highest rate of return (ROR) for a given risk. For each of
the 20 points along the frontier, the weighted investment in each portfolio
(Weights) would achieve that rate of return.

Now move to A28 and press F2, then Enter to execute the Financial Toolbox
function that plots the efficient frontier for the same portfolio data.
8

Example 4: Calculating and Plotting the Efficient Frontier of Financial Portfolios
MATLAB displays a figure.

The light blue line shows the efficient frontier. Note the change in slope above
a 6.8% return because the Corporate Bond portfolio no longer contributes to the
efficient frontier.

To try different data, close the figure window and change the data in cells
B4:D9. Then reexecute all the Excel Link functions. The worksheet then shows
the new frontier data, and MATLAB displays a new efficient frontier graph.

0 0.01 0.02 0.03 0.04 0.05 0.06
0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074
Mean−Variance−Efficient Frontier

Risk

R
O

R

2-19

2 Using Excel Link

2-2
Example 5: Bond Cash Flow and Time Mapping
Example 5 illustrates the use of the MATLAB Financial Toolbox and Excel
Link to compute a set of cash flow amounts and dates given a portfolio of five
bonds whose maturity dates and coupon rates are known.

Click the Sheet6 tab on ExliSamp.xls to try this example.

Make A18 the active cell. Press F2, then Enter to execute the Excel Link
function that transfers the column vector Maturity to MATLAB. Make A19 the
active cell to transfer the column vector Coupon Rate to MATLAB. Make A20
the active cell to transfer the settlement date to MATLAB. Execute the
functions in cells A23 and A24 to use the Financial Toolbox to compute cash flow
0

Example 5: Bond Cash Flow and Time Mapping
amounts and dates. Now execute the functions in cells A27 through A29 to
transform the dates into string form contained in a cell array. Execute the
functions in cells A32 through A34 to transfer the data to Excel.

Finally, execute the function in cell A37 to display a MATLAB plot of the cash
flows for each portfolio item.
2-21

2 Using Excel Link

2-2
2

3

Function Reference

Functions - Categorical List (p. 3-3) Functions organized by topic

Functions — Alphabetical List (p. 3-5) Functions organized alphabetically

3 Function Reference

3-2
This chapter provides detailed descriptions of all Excel Link functions. It first
groups the functions by task, then alphabetically.

Functions - Categorical List
Functions - Categorical List

Link Management Functions

You can invoke any link management function except matlabinit as a
worksheet cell formula or in a macro. You invoke matlabinit from the Excel
Tools Macro menu or in a macro subroutine.

matlabinit Initialize Excel Link and start MATLAB
process.

MLAutoStart Automatically start MATLAB process.

MLClose Terminate MATLAB process.

MLOpen Start MATLAB process.
3-3

3 Function Reference

3-4
Data Management Functions

You can invoke any data management function except MLGetVar and MLPutVar
as a worksheet cell formula or in a macro. You can invoke MLGetVar and
MLPutVar only in a macro.

matlabfcn Evaluate MATLAB command given Excel
data.

matlabsub Evaluate MATLAB command given Excel
data and designate output location.

MLAppendMatrix Create or append MATLAB matrix with data
from Excel worksheet.

MLDeleteMatrix Delete MATLAB matrix.

MLEvalString Evaluate command in MATLAB.

MLGetMatrix Write contents of MATLAB matrix in Excel
worksheet.

MLGetVar Write contents of MATLAB matrix in Excel
VBA variable.

MLPutMatrix Create or overwrite MATLAB matrix with
data from Excel worksheet.

MLPutVar Create or overwrite MATLAB matrix with
data from Excel VBA variable.

Functions — Alphabetical List

3-5

Functions — Alphabetical List 3

This section contains function reference pages listed alphabetically.

matlabfcn
3matlabfcnPurpose Evaluate MATLAB command given Excel data

Syntax

Description Passes the command to MATLAB for evaluation given the function input data.
The function returns a single value or string depending upon the MATLAB
output. The result is returned to the calling worksheet cell. This function is
intended for use as an Excel worksheet function.

Examples matlabfcn("sum", B1:B10)

sums the data in the spreadsheet cells B1 through B10 returning the output to
the active worksheet cell or Excel Visual Basic for Applications (VBA) output
variable.

matlabfcn("plot", B1:B10, "x")

plots the data in worksheet cells B1 through B10 using x as the marker type.

See Also matlabsub

Worksheet: matlabfcn(command, inputs)

command MATLAB command to evaluate. The MATLAB command
must be written as "command" (in double quotes) .

inputs Variable length input argument list passed to MATLAB
command. Argument list may contain a range of
worksheet cells that contain input data.
3-6

matlabinit
3matlabinitPurpose Initialize Excel Link and start MATLAB process

Syntax matlabinit

Note To run matlabinit, pull down the Excel Tools menu and select Macro.
In the Macro Name/Reference box, enter matlabinit and click Run. Or,
include it in a macro subroutine. You cannot run matlabinit as a worksheet
cell formula or in a macro function.

Description Initializes Excel Link and starts MATLAB process. If Excel Link has already
been initialized and MATLAB is running, subsequent invocations do nothing.
Use matlabinit to start Excel Link and MATLAB manually when you have set
MLAutoStart to "no". If MLAutoStart is set to "yes", matlabinit executes
automatically.

See Also MLAutoStart, MLOpen
3-7

matlabsub
3matlabsubPurpose Evaluate MATLAB command given Excel data and designate output location

Syntax

Description Passes the command to MATLAB for evaluation given the function input data.
The function returns a single value or string depending upon the MATLAB
output. This function is intended for use as an Excel worksheet function.

To return an array of data to the Excel Visual Basic for Applications (VBA)
workspace, see MLEvalString and MLGetVar.

Caution edat must not include the cell that contains the matlabsub function.
In other words, be careful not to overwrite the function itself. Also make sure
there is enough room in the worksheet to write the matrix contents. If there is
insufficient room, the function generates a fatal error.

Worksheet: matlabsub(command, edat, inputs)

command MATLAB command to evaluate. The MATLAB command
must be written as "command" (in double quotes) .

edat Worksheet location where the function writes the
contents of var_name. "edat" (in quotes) directly specifies
the location and it must be a cell address or a range
name. edat (without quotes) is an indirect reference: the
function evaluates the contents of edat to get the location.
edat must be a worksheet cell address or range name.

inputs Variable length input argument list passed to MATLAB
command. Argument list may contain a range of
worksheet cells that contain input data.
3-8

matlabsub
Examples matlabsub("sum", "A1", B1:B10)

sums the data in worksheet cells B1 through B10, returning the output to cell
A1.

See Also matlabfcn
3-9

MLAppendMatrix
3MLAppendMatrixPurpose Create or append MATLAB matrix with data from Excel worksheet

Syntax

Description Appends data in mdat to MATLAB matrix var_name. Creates var_name if it
does not exist. The function checks the dimensions of var_name and mdat to
determine how to append mdat to var_name. If the dimensions allow appending
mdat as either new rows or new columns, it appends mdat to var_name as new
rows. The function returns an error if the dimensions do not match. mdat must
contain either numeric data or string data. Data types cannot be combined
within the range specified in mdat. Empty mdat cells become MATLAB matrix
elements containing zero if the data is numeric and empty strings if the data is
a string.

Examples B is a 2-by-2 MATLAB matrix.

MLAppendMatrix("B", A1:A2)

Worksheet: MLAppendMatrix(var_name, mdat)

Macro: MLAppendMatrix var_name, mdat

var_name Name of MATLAB matrix to which to append data.
"var_name" (in quotes) directly specifies the matrix
name. var_name (without quotes) is an indirect reference:
the function evaluates the contents of var_name to get the
matrix name, and var_name must be a worksheet cell
address or range name

mdat Location of data to append to var_name. mdat (no quotes).
Must be a worksheet cell address or range name.

If this argument is not initially an Excel Range data type
and you call the function from a worksheet, Excel
proceeds by performing the necessary type coercion.
However, if you call MLAppendMatrix from within a VBA
macro, and mdat is not an Excel Range data type, the call
fails. Excel generates the error message ByRef Argument
Type Mismatch.
3-10

MLAppendMatrix
appends the data in cell range A1:A2 to the MATLAB matrix B. B is now a
2-by-3 matrix with the data from A1:A2 in the third column.

B is a 2-by-2 MATLAB matrix. Cell C1 contains the label (string) B, and
new_data is the name of the cell range A1:B2.

MLAppendMatrix(C1, new_data)

appends the data in cell range A1:B2 to B. B is now a 4-by-2 matrix with the data
from A1:B2 in the last two rows.

See Also MLPutMatrix

A1

A2

A1 B1

A2 B2
3-11

MLAutoStart
3MLAutoStartPurpose Automatically start MATLAB process

Syntax

Description Sets automatic startup of Excel Link and MATLAB. When Excel Link is
installed, the default is yes. A change of state takes effect the next time Excel
is started.

Example MLAutoStart("no")

cancels automatic startup of Excel Link and MATLAB. The next time Excel
starts, Excel Link and MATLAB will not start.

See Also matlabinit, MLClose, MLOpen

Worksheet: MLAutoStart("yes")
MLAutoStart("no")

Macro: MLAutoStart "yes"
MLAutoStart "no"

"yes" Automatically start Excel Link and MATLAB every time
Excel starts (default).

"no" Cancel automatic startup of Excel Link and MATLAB. If
Excel Link and MATLAB are running, it does not stop
them.
3-12

MLClose
3MLClosePurpose Terminate MATLAB process

Syntax

Description Terminates the MATLAB process, deletes all variables from the MATLAB
workspace, and tells Excel that MATLAB is no longer running. If no MATLAB
process is running, nothing happens.

See Also MLOpen

Worksheet: MLClose()

Macro: MLClose
3-13

MLDeleteMatrix
3MLDeleteMatrixPurpose Delete MATLAB matrix

Syntax

Description Deletes the named matrix from the MATLAB workspace.

Example MLDeleteMatrix("A")

deletes matrix A from the MATLAB workspace.

Worksheet: MLDeleteMatrix(var_name)

Macro: MLDeleteMatrix var_name

var_name Name of MATLAB matrix to delete. "var_name" (in
quotes) directly specifies the matrix name. var_name
(without quotes) is an indirect reference: the function
evaluates the contents of var_name to determine the
matrix name, and var_name must be a worksheet cell
address or range name.
3-14

MLEvalString
3MLEvalStringPurpose Evaluate command in MATLAB

Syntax

Description Passes the command string to MATLAB for evaluation. The specified action
alters only the MATLAB workspace. Nothing is done in the Excel workspace.

Example MLEvalString("b = b/2;plot(b)")

divides the MATLAB variable b by 2 and plots it. Only the MATLAB variable
b is modified. To update data in the Excel worksheet, use MLGetMatrix.

See Also MLGetMatrix

Worksheet: MLEvalString(command)

Macro: MLEvalString command

command MATLAB command to evaluate. "command" (in quotes)
directly specifies the command. command (without quotes)
is an indirect reference: the function evaluates the
contents of command to get the command, and command
must be a worksheet cell address or range name.
3-15

MLGetMatrix
3MLGetMatrixPurpose Write contents of MATLAB matrix in Excel worksheet

Syntax

Description Writes the contents of MATLAB matrix var_name in the Excel worksheet,
beginning in the upper left cell specified by edat. If data already exists in the
specified worksheet cells, it is overwritten. If the dimensions of the MATLAB
matrix are larger than those of the specified cells, the data will overflow into
additional rows and columns.

Caution edat must not include the cell that contains the MLGetMatrix
function. In other words, be careful not to overwrite the function itself. Also
make sure there is enough room in the worksheet to write the matrix
contents. If there is insufficient room, the function generates a fatal error.

If edat is an explicit cell address and you later insert or delete rows or columns,
or move or copy the function to another cell, edit edat to correct the address.
Excel Link does not automatically adjust cell addresses in MLGetMatrix.

If worksheet calculation mode is automatic, MLGetMatrix executes when you
enter the formula in a cell. If worksheet calculation mode is manual, enter the

Worksheet: MLGetMatrix(var_name, edat)

Macro: MLGetMatrix var_name, edat

var_name Name of MATLAB matrix to access. "var_name" (in
quotes) directly specifies the matrix name. var_name
(without quotes) is an indirect reference: the function
evaluates the contents of var_name to get the matrix
name, and var_name must be a worksheet cell address or
range name.

edat Worksheet location where the function writes the
contents of var_name. "edat" (in quotes) directly specifies
the location and it must be a cell address or a range
name. edat (without quotes) is an indirect reference: the
function evaluates the contents of edat to get the location,
and edat must be a worksheet cell address or range
name.
3-16

MLGetMatrix
MLGetMatrix function in a cell, then press F9 to execute it. However, pressing
F9 in this situation may also re-execute other worksheet functions and
generate unpredictable results.

If you use MLGetMatrix in a macro subroutine, enter MatlabRequest on the line
after the MLGetMatrix. MatlabRequest initializes internal Excel Link variables
and enables MLGetMatrix to function in a subroutine. Do not include
MatlabRequest in a macro function unless the function is called from a
subroutine.

Examples MLGetMatrix("bonds", "Sheet2!C10")

writes the contents of the MATLAB matrix bonds starting in cell C10 of Sheet2.
If bonds is a 4-by-3 matrix, data fills cells C10..E13.

MLGetMatrix(B12, B13)

accesses the MATLAB matrix named as a string in worksheet cell B12 and
writes the contents of the matrix in the worksheet starting at the location
named as a string in worksheet cell B13.

Sub Get_RangeA()
MLGetMatrix "A", "RangeA"
MatlabRequest

End Sub

writes the contents of MATLAB matrix A in the worksheet starting at the cell
named RangeA.

See Also MLAppendMatrix, MLPutMatrix
3-17

MLGetVar
3MLGetVarPurpose Write contents of MATLAB matrix in Excel VBA variable

Syntax

Description Writes the contents of MATLAB matrix ML_var_name in the Excel Visual Basic
for Applications (VBA) variable VBA_var_name. Creates VBA_var_name if it does
not exist. Replaces existing data in VBA_var_name. Use MLGetVar only in a
macro subroutine, not in a macro function or in a subroutine called by a
function.

Example Sub Fetch()
MLGetVar "J", DataJ

End Sub

writes the contents of MATLAB matrix J in the VBA variable named DataJ.

See Also MLPutVar

MLGetVar ML_var_name, VBA_var_name

ML_var_name Name of MATLAB matrix to access. "ML_var_name" (in
quotes) directly specifies the matrix name. ML_var_name
(without quotes) is an indirect reference: the function
evaluates the contents of ML_var_name to get the matrix
name, and ML_var_name must be a VBA variable
containing the matrix name as a string.

VBA_var_name Name of VBA variable where the function writes the
contents of ML_var_name. Use VBA_var_name without
quotes.
3-18

MLOpen
3MLOpenPurpose Start MATLAB process

Syntax

Description Starts MATLAB process. If a MATLAB process has already been started,
subsequent calls to MLOpen do nothing. Use MLOpen to restart MATLAB after
you have stopped it with MLClose in a given Excel session.

Note We recommend using matlabinit rather than MLOpen, since
matlabinit starts MATLAB and initializes Excel Link.

Example MLOpen()

starts the MATLAB process.

See Also matlabinit, MLClose

Worksheet: MLOpen()

Macro: MLOpen
3-19

MLPutMatrix
3MLPutMatrixPurpose Create or overwrite MATLAB matrix with data from Excel worksheet

Syntax

Description Creates or overwrites matrix var_name in MATLAB workspace with specified
data in mdat. Creates var_name if it does not exist. If var_name already exists,
this function replaces the contents with mdat. Empty numeric data cells within
the range of mdat become numeric zeros within the MATLAB matrix identified
by var_name.

If any element of mdat contains string data, mdat is exported as a MATLAB cell
array. Empty string elements within the range of mdat become NaNs within the
MATLAB cell array.

To use MLPutMatrix in a subroutine, you must indicate the source of the
worksheet data using the Excel macro Range. For example:

Sub test()
MLPutMatrix "a", Range("A1:A3")
End Sub

If you have a named range in your worksheet, you can use the name instead of
actually specifying the range. For example:

Sub test()
MLPutMatrix "a", Range("temp")
End Sub

where temp is a named range in your worksheet.

Worksheet: MLPutMatrix(var_name, mdat)

Macro: MLPutMatrix var_name, mdat

var_name Name of MATLAB matrix to create or overwrite.
"var_name" (in quotes) directly specifies the matrix
name. var_name (without quotes) is an indirect reference:
the function evaluates the contents of var_name to get the
matrix name, and var_name must be a worksheet cell
address or range name.

mdat Location of data to copy into var_name. mdat (no quotes).
Must be a worksheet cell address or range name.
3-20

MLPutMatrix
Example MLPutMatrix("A", A1:C3)

creates or overwrites matrix A in the MATLAB workspace with the data in the
worksheet range A1:C3.

See Also MLAppendMatrix, MLGetMatrix
3-21

MLPutVar
3MLPutVarPurpose Create or overwrite MATLAB matrix with data from Excel VBA variable

Syntax

Description Creates or overwrites matrix ML_var_name in MATLAB workspace with data in
VBA_var_name. Creates ML_var_name if it does not exist. If ML_var_name already
exists, this function replaces the contents with data from VBA_var_name. Use
MLPutVar only in a macro subroutine, not in a macro function or in a subroutine
called by a function.

Empty numeric data cells within VBA_var_name become numeric zeros within
the MATLAB matrix identified by ML_var_name.

If any element of VBA_var_name contains string data, VBA_var_name is exported
as a MATLAB cell array. Empty string elements within VBA_var_name become
NaNs within the MATLAB cell array.

Example Sub Put()
MLPutVar "K", DataK

End Sub

creates or overwrites MATLAB matrix K with the data in the Excel Visual
Basic for Applications (VBA) variable DataK.

See Also MLGetVar

MLPutVar ML_var_name, VBA_var_name

ML_var_name Name of MATLAB matrix to create or overwrite.
"ML_var_name" (in quotes) directly specifies the matrix
name. ML_var_name (without quotes) is an indirect
reference: the function evaluates the contents of
ML_var_name to get the matrix name, and ML_var_name
must be a VBA variable containing the matrix name as a
string.

VBA_var_name Name of VBA variable whose contents are written to
ML_var_name. Use VBA_var_name without quotes.
3-22

A

Error Messages and
Troubleshooting

Excel Cell Error Messages (p. A-2) Error messages displayed in a worksheet cell.

Excel Error Message Boxes (p. A-5) Error messages displayed in an Excel error message box.

Audible Error Signals (p. A-7) Audible error signals while passing data to MATLAB.

Data Errors (p. A-8) Undesirable data characteristics.

A Error Messages and Troubleshooting

A-2
Excel Cell Error Messages
Excel may display one of these error messages in a worksheet cell.

Table A-1: Excel Cell Error Messages

Excel Cell Error Message Meaning Solution

#COLS>256 Your MATLAB variable
exceeds the Excel limit of
256 columns.

This is a limitation in Excel.
Try the computation with a
variable containing fewer
columns.

#COMMAND! MATLAB does not
recognize the command
in an MLEvalString
function. The command
may be misspelled.

Verify the spelling of the
MATLAB command. Correct
typing errors.

#DIMENSION! You used
MLAppendMatrix and the
dimensions of the
appended data do not
match the dimensions of
the matrix you want to
append.

Verify the matrix dimensions
and the appended data
dimensions, and correct the
argument. See
MLAppendMatrix in Chapter 3,
“Function Reference.”

#INVALIDNAME! You entered an illegal
variable name.

Make sure to use legal
MATLAB variable names.
MATLAB variable names must
start with a letter followed by
up to 30 letters, digits, or
underscores.

#INVALIDTYPE! You have specified an
illegal MATLAB data
type with MLGetVar or
MLGetMatrix.

See “Data Types” on page 1-11
for a list of supported MATLAB
data types.

Excel Cell Error Messages
#MATLAB? You used an Excel Link
function and MATLAB is
not running.

Start Excel Link and MATLAB.
See “Starting Excel Link” on
page 1-5.

#NAME? Excel doesn’t recognize
the function name. The
excllink.xla add-in is
not loaded, or the
function name may be
misspelled.

Be sure the excllink.xla
add-in is loaded. See
“Configuring Excel to Work
with Excel Link” on page 1-3.
Check the spelling of the
function name. Correct typing
errors.

#NONEXIST! You referenced a
nonexistent matrix in an
MLGetMatrix or
MLDeleteMatrix
function. The matrix
name may be misspelled.

Verify the spelling of the
MATLAB matrix. Use the
MATLAB whos command to
display existing matrices.
Correct typing errors.

#ROWS>65536 Your MATLAB variable
exceeds the Excel limit of
65536 rows.

This is a limitation in Excel.
Try the computation with a
variable containing fewer rows.

#SYNTAX? You entered an Excel
Link function with
incorrect syntax; for
example, the double
quotes (") may be
missing, or you used
single quotes (') instead
of double quotes.

Verify and correct the function
syntax. See Chapter 3,
“Function Reference” for
function syntax.

Table A-1: Excel Cell Error Messages (Continued)

Excel Cell Error Message Meaning Solution
A-3

A Error Messages and Troubleshooting

A-4
Note When you open an Excel worksheet that contains Excel Link functions,
Excel tries to execute the functions from the bottom up and right to left, thus
possibly generating cell error messages (#COMMAND!, #NONEXIST!, etc.). Such
behavior is usual for Excel. Simply ignore the messages, close any MATLAB
figure windows, and reexecute the cell functions one at a time in the correct
order by pressing F2, then Enter.

#VALUE! An argument is missing
from a function, or a
function argument is the
wrong type.

Supply the correct number of
function arguments, of the
correct type.

#VALUE! A macro subroutine uses
MLGetMatrix followed by
MatlabRequest, which is
correct standard usage.
A macro function calls
that subroutine, and you
execute that function
from a worksheet cell.
The function works
correctly, but this
message appears in the
cell.

Since the function works
correctly, you may ignore the
message. Or, in this special
case, remove MatlabRequest
from the subroutine.

Table A-1: Excel Cell Error Messages (Continued)

Excel Cell Error Message Meaning Solution

Excel Error Message Boxes
Excel Error Message Boxes
Excel may display one of these error message boxes.

Table A-2: Excel Error Message Boxes

Excel Error Message Box Meaning Solution

 You entered a formula
incorrectly. Common errors
include a space between the
function name and the left
parenthesis; or missing,
extra, or mismatched
parentheses.

Check entry and correct
typing errors.

 You tried to execute a macro
and the location of
excllink.xla is incorrect.

Click OK. The References
window opens. Remove the
check from MISSING:
excllink.xla. Find
excllink.xla in its correct
location, check its box in the
References window, and
click OK.
A-5

A Error Messages and Troubleshooting

A-6
 You used MLGetMatrix and
the matrix is larger than
the space available in the
worksheet. This error
destabilizes Excel Link and
changes worksheet
calculation mode to manual.

Click OK. Reset worksheet
calculation mode to
automatic and save your
worksheet (if desired). Close
Excel and MATLAB.
Restart Excel, Excel Link,
and MATLAB.

The license passcode that
you entered was invalid.

Check that you entered the
license passcode properly. If
you used a proper passcode
and you are still unable to
start Excel Link, contact
your MathWorks
representative.

Table A-2: Excel Error Message Boxes (Continued)

Excel Error Message Box Meaning Solution

Audible Error Signals
Audible Error Signals
Audible error signals while passing data to MATLAB with MLPutMatrix or
MLAppendMatrix usually mean you have insufficient computer memory to carry
out the operation. Close other applications or clear unnecessary variables from
the MATLAB workspace and try again. If the error signal reoccurs, you
probably have insufficient physical memory in your computer for this
operation.
A-7

A Error Messages and Troubleshooting

A-8
Data Errors
Data in the MATLAB or Excel workspaces may exhibit these undesired
characteristics.

Table A-3: Data Errors

Data Error Cause Solution

MATLAB matrix cells contain
zeros (0).

Corresponding Excel
worksheet cells are empty.

Excel worksheet cells must
contain only numeric or
string data.

MATLAB matrix is a 1-by-1 zero
matrix.

You used quotes around the
data-location argument in
MLPutMatrix or
MLAppendMatrix.

Correct the syntax to
remove quotes.

MATLAB matrix is empty ([]). You referenced a
nonexistent VBA variable
in MLPutVar.

Correct the macro; you may
have typed the variable
name incorrectly.

VBA matrix is empty. You referenced a
nonexistent MATLAB
variable in MLGetVar.

Correct the macro; you may
have typed the variable
name incorrectly.

B

Installed Files

Files and Directories (p. B-2) Locations of files and directories created by Excel Link
installation.

B Installed Files

B-2
Files and Directories
The Excel Link installation program creates the subdirectory exlink under
<matlab>/toolbox/. This directory contains the files

• excllink.xla: Excel Link add-in

• ExliSamp.xls: Excel Link samples described in this manual

Installation also creates an Excel Link initialization file, exlink.ini, in the
appropriate Windows directory (for example, C:\Winnt).

For all operating systems, the C:\MATLAB\bin directory should be on your
system path.

On Windows 98 also add C:\Win98\system to your path. On Windows NT or
Windows 2000 add the C:\Winnt\system and C:\Winnt\system32 directories
to your path.

Excel Link uses Kernel32.dll, which should already be in the appropriate
Windows system directory (for example, C:\Winnt\system32).

Index
Symbols
A-2, A-3
/automation option 1-5

Numerics
1904 date system 1-12

A
add-in, Excel Link 1-4, A-3
audible error signals A-7

B
beeps A-7
binomial tree 2-13

C
calculation mode A-6
cash flow example 2-20
cell error messages A-2
COLS error A-2
COMMAND error A-2
computer memory errors A-7
curve fitting example 2-3

D
data errors A-8
data interpolation example 2-9
data types 1-11
data-location argument A-7, A-8
dates 1-11
DIMENSION error A-2
double quotes A-3
E
efficient frontier example 2-16
empty matrix A-8
error message boxes A-5
error messages A-2
examples

cash flow 2-20
efficient frontier 2-16
interpolating data 2-9
regression and curve fitting 2-3
stock option 2-13

Excel error message boxes A-5
Excel Link

installing 1-3
starting 1-5
stopping 1-3, 1-5

excllink.xla B-2
excllink.xla add-in A-5
exlink subdirectory B-2
exlink.ini file B-2
ExliSamp.xls file

location B-2
purpose 2-2

F
function names 1-9

I
initialization file B-2
interpolating data 2-9
INVALIDNAME error A-2
INVALIDTYPE error A-2
Index-1

Index

Ind
K
Kernel32.dll B-2

L
license passcode A-6
link management functions 1-7

M
macros 1-11
MATLAB error A-3
matlabfcn 3-6
matlabinit 3-7
matlabsub 3-8
matrix dimensions A-2
MLAppendMatrix 3-10
MLAutoStart 3-12
MLClose 3-13
MLDeleteMatrix 3-14
MLEvalString 3-15
MLGetMatrix 3-16
MLGetVar 3-18
MLOpen 3-19
MLPutMatrix 3-20
MLPutVar 3-22

N
NAME error A-3
NONEXIST error A-3
nonexistent variable A-8

P
passcode

license A-6
ex-2
R
regression and curve fitting 2-3
requirements 1-3
ROWS error A-3

S
signals error A-7
single quotes A-3
stock option pricing example 2-13
SYNTAX error A-3
system path

files on B-2

T
troubleshooting error messages A-2

V
VALUE error A-4
variable names 1-9

W
worksheetformulas 1-9
worksheets 1-10

saved 1-12

Z
zero matrix A-8
zero matrix cells A-8

	Getting Started
	What Is Excel Link?
	Understanding the Environment

	Installing and Operating Excel Link
	System Requirements
	Installing Excel Link
	Configuring Excel to Work with Excel Link
	Starting Excel Link
	Connecting to an Existing MATLAB Session
	Stopping Excel Link

	What the Functions Do
	Link Management Functions
	Data Management Functions

	Tips and Reminders
	Syntax
	Worksheets
	Macros
	Data Types
	Dates
	Saved Worksheets
	Information for International Users

	Using Excel Link
	Example 1: Regression and Curve Fitting
	Worksheet Version
	Macro Version

	Example 2: Interpolating Data
	Example 3: Pricing a Stock Option with the Binomial Model
	Example 4: Calculating and Plotting the Efficient Frontier of Financial Portfolios
	Example 5: Bond Cash Flow and Time Mapping

	Function Reference
	Functions - Categorical List
	Link Management Functions
	Data Management Functions

	Functions — Alphabetical List

	Error Messages and Troubleshooting
	Excel Cell Error Messages
	Excel Error Message Boxes
	Audible Error Signals
	Data Errors

	Installed Files
	Files and Directories

	Index

